Effects of Flow Transients on the Burning Velocity of Laminar Hydrogen/air Premixed Flames
نویسندگان
چکیده
The effects of unsteady strain rate on the burning velocity of hydrogen/air premixed flames have been studied in an opposed nozzle configuration. The numerical method employs adaptive time integration of a system of differential–algebraic equations. Detailed hydrogen/air kinetic mechanism and transport properties are considered. The equivalence ratio is varied from lean to rich premixtures in order to change the effective Lewis number. Steady Markstein numbers for small strain rate are computed and compared with experiment. Different definitions of flame burning velocity are examined under steady and unsteady flow conditions. It is found that, as the unsteady frequency increases, large deviations between different flame speeds are noted depending on the location of the flame speed evaluation. Unsteady flame response is investigated in terms of the Markstein transfer function, which depends on the frequency of oscillation. In most cases, the flame speed variation attenuates at higher frequencies, as the unsteady frequency becomes comparable to the inverse of the characteristic flame time. Furthermore, unique resonance-like behavior is observed for a range of rich mixture conditions, consistent with previous studies with linearized theory.
منابع مشابه
Suppression effects of diluents on laminar premixed hydrogen/oxygen/nitrogen flames
Laminar burning velocities and the flame response to stretch, as characterized by Markstein numbers, were determined experimentally and computationally for outwardly propagating spherical laminar premixed flames. The mixtures studied were premixed hydrogen/air/diluent and hydrogen/30% oxygen and 70% nitrogen (by volume)/diluent flames, with the latter condition of interest for pre-external vehi...
متن کاملThe Effect of Hydrogen Addition on the Combustion Characteristics of RP-3 Kerosene/Air Premixed Flames
Experimental studies have been performed to investigate the effects of hydrogen addition on the combustion characteristics of Chinese No.3 jet fuel (RP-3 kerosene/air premixed flames. Experiments were carried out in a constant volume chamber and the influences of the initial temperatures of 390 and 420 K, initial pressures of 0.1 and 0.3 MPa, equivalence ratios of 0.6–1.6 and hydrogen additions...
متن کاملThe Temperature and Pressure Dependencies of Propagation Characteristics for Premixed Laminar Ethanol-Air Flames
Laminar burning velocity is strongly dependent on mixture characteristics, e.g. initial temperature, pressure and equivalence ratio. In this work, spherically expanding laminar premixed flames, freely propagating from a spark ignition source in initially quiescent ethanol-air mixtures, have been imaged and then the laminar burning velocities were obtained at initial temperatures of 358 K to 500...
متن کاملA study of the effects of diluents on near-limit H2–air flames in microgravity at normal and reduced pressures
A combination of microgravity experiments and computational simulations were used to study effects of diluents on the near-limit properties of laminar, premixed hydrogen/air flames. The experiments were conducted in a short-drop free-fall laboratory facility that provided at least 450 ms of 10−2g conditions. Outwardly propagating spherical flames were used to measure near-limit laminar burning ...
متن کاملChemically-Passive Suppression of Laminar Premixed Hydrogen Flames in Microgravity
Effects of chemically-passive fire suppressants on laminar premixed hydrogen flames were investigated by combined use of microgravity experiments and computations. The experiments used a short-drop free-fall laboratory facility that provides at least 450 ms of 2 10 g. Near -limit laminar burning velocities were measured for outwardly propagating spherical stoichiometric hydrogen-air flames with...
متن کامل